
Damping Identification with the Morlet-Wave
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Abstract

In the past decade damping-identification methods based on the continuous
wavelet transform (CWT) have been shown to be some of the best methods
for analyzing the damping of multi-degree-of-freedom systems. The CWT
methods have proven themselves to be resistant to noise and able to identify
damping at closely spaced natural frequencies. However, with the CWT-
based techniques, the CWT needs to be obtained on a two-dimensional,
time-frequency grid, and they are, therefore, computationally demanding.
Furthermore, the CWT is susceptible to the edge effect, which causes a non-
valid identification at the start and the end of the time-series.
This study introduces a new method, called the Morlet-wave method, where
a finite integral similar to the CWT is used for the identification of the vis-
cous damping. Instead of obtaining the CWT on a two-dimensional grid,
the finite integral needs to be calculated at one time-frequency point, only.
Then using two different integration parameters, the damping ratio can be
identified. A complete mathematical background of the new, Morlet-wave,
damping-identification method is given and this results in a root-finding or
a closed-form solution.
The presented numerical experiments show that the new method has a sim-
ilar performance to the CWT-based damping-identification methods, while
the method is numerically, significantly less demanding, completely avoids
the edge effect, and the procedure is straight forward to use.
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1. Introduction

Oscillating mechanical systems involve the exchange of kinetic and po-
tential energy, while the dissipation of energy, caused by damping, forces the
oscillations to die out. Compared to the stiffness and mass properties, how-
ever, these damping parameters are more difficult to identify. The factors
affecting damping include dry friction, viscous friction in fluids, and friction
on the atomic level. Due to the broad range of damping influences a number
of simplified models were developed. One of the most widely used models,
the viscous damping model, assumes the damping force is proportional to
the velocity. Another widely used model is the structural damping model,
where the dissipation of energy in a single oscillation is independent of the
frequency [1]. A generalization of the different damping models is possible
with the equivalent viscous damping model. In this research the damping
will be discussed in terms of the damping ratio, i.e., the fraction of critical
damping.
Pradina et al. [2] studied the performance of different approaches to deter-
mining linear viscous damping: from a closed-form solution, identification
methods based on inverting the matrix of receptances, energy expressions de-
veloped from single-frequency excitation and responses as well as first-order
perturbation methods. The experimental identification of modal damping
ratios can be based on forced vibration, free vibration or ambient vibration
tests [3]; this research focuses on the continuous wavelet transform (CWT)
based techniques of damping identification from the free vibration response
as a consequence of a impact excitation.
In the past decade the CWT-based damping-identification methods have
proved to be some of the more promising damping-identification methods
and were extensively researched by Staszewski [1, 4], Ruzzene et al. [5],
Lamarque et al. [6, 7], and Ghanem and Romeo [8]. This was followed by
research focused on noise and enhancements to the edge effect1 by Slavič
and Boltežar [9, 10]. Later studies, by Lardies et al. [11, 12] and Ar-
goul et al. [13, 14, 15], among others, looked at modal identification with
the CWT [16]. Recently, Chen et.al [17] researched guidelines for system
identification with the Morlet mother wavelet.

1Also called end-effect.
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Some recent research has compared the CWT methods to the Hilbert-Huang
transform methods [18] and also to Gabor analysis [19]. The use of the CWT
for damping-identification uses pattern-search updating for the correction of
the identification results [20] and the frequency-slice wavelet transform for
the transient vibration response analysis [21, 22].
The CWT methods have proven to be resistant to noise and can identify
damping at closely spaced natural frequencies [1, 9, 10]. Usually, the CWT
methods require the following steps: the calculation of the CWT transform
at a time-frequency grid, followed by the ridge and skeleton detection phase,
and, finally, after the edge effected region has been removed from the identi-
fication area, the damping ratio can be identified from the logarithmic decay.
The CWT transform at a dense time-frequency grid can, however, be nu-
merically very demanding. Furthermore, the edge effect requires a manual
selection of the time-window appropriate for the damping-identification, and
as was shown by Boltežar and Slavič [10], up to 80% of the signal can be
lost to the edge effect.
This research proposes a new method, called the Morlet-Wave (MW) damping-
identification method, which significantly decreases the numerical load to
one time-frequency point that needs to be evaluated at two parameter sets
and completely avoids the edge effect. The basic idea is presented in Sec-
tion 2, while the basics of the continuous wavelet transform are given in
Section 3 and the MW damping-identification method is presented in Sec-
tions 4. This is followed by the numerical experiment in Section 5, where the
numerical investigation of the presented method is given. The summary of
the Morlet-wave method is given in Section 6. The conclusions are given in
Section 7, and the Appendix presents the details of the MW mathematical
deduction.

2. Basic Idea

Figure 1 shows the procedure for the damping-identification based on the
CWT: the signal first needs to be transformed at a relatively dense time-
frequency grid, which represents the numerically most demanding step of
the damping identification. The second step of the CWT-based damping-
identification is the ridge detection. The ridges represent the frequency
content of the analyzing signal with a high energy density, which is depen-
dent on the time. Staszewski [1] discussed three methods of ridge detection:
the cross-sections method, with selected (constant) frequency, the amplitude
method, which is based on the maxima of the CWT; and the phase method,
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which is based on matching the angular velocity of the CWT with the an-
gular velocity of the wavelet function. The values of the CWT that are
restricted to the ridge are called the skeleton. The third step in the CWT-
based damping-identification is the edge effect consideration. Boltežar and
Slavič [10] showed that the edge effect depends a lot on the identified damp-
ing ratio. The last step of the CWT-based damping-identification is to
identify the damping ratio using the logarithmic decay of the skeleton.
The Wave-method procedure shown in Figure 1 starts by selecting the natu-
ral frequency with which the damping ratio should be identified. The natural
frequency is considered to be constant with time2. In the second step the
CWT similar finite integral is calculated with two different wave parameters
(shown as wave 1 and wave 2 in Figure 1). The resulting finite integral
hides the unknown parameters of the oscillating sinusoidal: the amplitude,
the phase and the damping ratio. In Section 4.2 this study shows that
the unknown damping-ratio can be identified using a simplified closed-form
solution, or the exact solution that requires root-finding.

3. Continuous Wavelet transform

The continuous wavelet transform (CWT) of the measured signal fm(t) ∈
L2(R) is defined as:

Wfm(u, s) =

∫ +∞

−∞
fm(t)ψ∗u,s(t) dt, (1)

where u and s are the translation and scalation parameters, respectively [23],
and ψ∗u,s(t) is the translated-and-scaled complex conjugate of the basic/mother
wavelet function ψ(t) ∈ L2(R). The wavelet function is a normalized func-
tion (i.e., the norm is equal to 1) with an average value of zero [24].

The normalized Morlet mother wavelet function [24, 25] is defined as:

ψ(t, η) =
1
4
√
π
e−

t2

2 ei η t. (2)

where η is the modulation frequency and 1
4√π is used for the normaliza-

2Using CWT-based damping-identification techniques on real experiments showed that
the frequency of oscillation rarely changes significantly with time [9]. Furthermore, the
goal is to identify the damping from as short a signal as possible (i.e., 30 oscillations)
giving another reason to assume a constant frequency
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Figure 1: Comparison of the CWT-based damping-identification procedure with the
Morlet-wave-method procedure.

tion [25]. The scaled-and-translated wavelet function is:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
. (3)

For this study the important properties of the Morlet wavelet functions
are [25]:

ωu,s =
η

s
Center frequency. (4)
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σtu,s =
s√
2

Time spread. (5)

σωu,s =
1√
2 s

frequency-spread. (6)

A very useful property of the CWT is its linearity:(
W

N∑
i=1

αi xi

)
(u, s) = αi

N∑
i=1

(W xi) (u, s), (7)

which makes it possible to analyze each ith component xi of a multi-component
signal

∑N
i=1 αi xi, where αi is a constant. The closely spaced frequencies ω1

and ω2 can be successfully identified if the frequency-spread is smaller than
their difference [24]:

max(σωu,s1 , σωu,s2 ) < |ω1 − ω2|. (8)

Recently, Chen et.al [17] researched the Morlet wavelet parameter selection
on the closely spaced frequencies.

4. Morlet-Wave Damping-Identification Method

4.1. Equivalent Viscous Damping Model

Damping mechanisms include friction on the atomic/molecular level, dry
friction, viscous friction in fluids, etc., and so it is often difficult to describe
in detail the real physical background using mathematical means. As a
consequence of this, a number of simplified models were developed (dry fric-
tion, viscous, hysteretic, and others). Of these models, the model of viscous
damping is the most widely used, it assumes that the damping force is pro-
portional to the velocity of oscillation; and so it follows that the work done
by one oscillation cycle depends on the frequency of oscillation. In struc-
tural damping the work done in one cycle is independent of the oscillation
frequency and the dissipation of vibrational energy is proportional to the
square of the amplitude [26].
To overcome the shortcomings of the different models the model of equiva-
lent viscous damping can be used [27]. Therefore, viscous damping in terms
of the damping ratio (i.e. the fraction of critical damping) is used in this re-
search. As a result, the damping matrix can be assumed to be proportional
to the mass or stiffness matrix, so the system of differential equations can
be uncoupled [9, 26].
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4.2. Theoretical Background of the Morlet-Wave Damping-Identification Method

The measured (viscously) damped signal fm(t) is defined as

fm(t) = X e−δ ω t cos(ωd t− ϕ); 0 ≤ t ≤ T, (9)

where X is the amplitude, δ is the damping ratio, ϕ is the phase, T is
the time-length of the analyzed mode, and ω and ωd are the undamped
and damped oscillating frequencies, respectively. For this study the usual
assumption for lightly damped dynamical systems was used, i.e., ωd =
ω
√

1− δ2 ≈ ω.
The MW damping-identification method is based on a finite integral that

is similar to the CWT using the Morlet wavelet:

I =

∫ T

0
fm(t)ψ∗u,s(t) dt, (10)

where the translation parameter u is defined as u = T/2. The scale s influ-
ences the time-spread of the CWT via Eq. (5). As was discussed by Boltežar
and Slavič [10], the time-spread of the CWT influences the resistance of the
damping-identification to noise. For the subsequent mathematical manipu-
lation it is reasonable to relate the time-length of the analyzed signal T to
the time-spread: T = nσtu,s = n s /

√
2, where n is called the time-spread

parameter. It follows that the scale is defined as:

s =

√
2T

n
. (11)

In general, the duration T is arbitrary; however, when the theoretical inte-
gration limits of Eq. (1) go from ∞ to limited values, the integration errors
are more pronounced; this is particularly so for the phase error [10]. To
keep this error small and for the sake of later mathematical manipulations,
T is limited to integer multiples of the oscillation period of the damped
signal ∆T = 2π/ω:

T = k
2π

ω
, (12)

where k defines the number of oscillations of frequency ω in the measured
signal fm(t) (9). The damping identification starts with selecting the natural
frequency of interest ω, followed by selecting the proper value for integer k.
Clearly, the total length of the measured signal fm(t) needs to be longer
then the analyzed time T .
From Eqs. (11) and (12) it follows that:

s =
2
√

2π k

ω n
. (13)
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The center frequency (4) of the CWT needs to match the oscillating fre-
quency of the measured signal ωu,s = ω, and using Eqs. (12) and (13) the
frequency of modulation η is defined as:

η = ω s =
2
√

2π k

n
. (14)

Rewriting Eq.(10):

I =

∫ T

0
fm(t)

(
1

4
√
π
√
s
e−

(
t−T/2
s )2

2 e−i η
t−T/2
s

)
dt (15)

and then by using the parameters n, k and ω, only:

I(n, k, ω) =

∫ k 2π
ω

0
fm(t)

 1

4
√
π

√
2
√
2π k
ω n

e−
(
t−k 2π

ω /2

2
√
2π k
ω n

)2

2 e
−i 2

√
2π k
n

t−k 2π
ω /2

2
√
2π k
ω n

 dt,

(16)

Using the assumptions δ ≤ n2

8π k (A.13) the amplitude of I(n, k, ω) Eq.(16)
is approximated with Eq.(A.19) (for details, see Appendix A):

|I(n, k, ω)| ≈ X 4
√

2π3

√
k

nω
e
π k δ (4π k δ−n2)

n2

(
Erf

(
2π k δ

n
+
n

4

)
− Erf

(
2π k δ

n
− n

4

))
,

(17)
where X is the unknown amplitude and δ is the unknown damping ratio
(the phase was reduced by obtaining the amplitude of I(n, k, ω)).

4.3. Exact Morlet-Wave Damping-Identification Method

The unknown amplitude of oscillationX is reduced by dividing two |I(n, k, ω)|
functions at different time-spread parameters n1 and n2:

M(n1, n2, k, ω) =
|I(n1, k, ω)|
|I(n2, k, ω)| , (18)

resulting in:

M(n1, n2, k, ω) = e

4π2 k2 δ2 (n22−n21)
n21 n

2
2

√
n2
n1

Erf
(
2π k δ
n1

+ n1
4

)
− Erf

(
2π k δ
n1
− n1

4

)
Erf
(
2π k δ
n2

+ n2
4

)
− Erf

(
2π k δ
n2
− n2

4

)
︸ ︷︷ ︸

G

(19)
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All the parameters except the damping ratio δ are known, and obtaining the
numerical values of M(n1, n2, k, ω)Num by numerical integration Eq.(16) the
Eq. (19) can be solved in a non-algebraic way by finding the numerical so-
lution for δ.

4.4. Simplified Closed-Form Morlet-Wave Damping-Identification Method

Further simplifications are possible if n1 > 10 and n1 < n2 when the
part G in Eq. (19) is approximated by G ≈ 1 and an algebraic solution for
the unknown δ is possible:

δMorlet =
n1 n2

2π
√
k2 n22 − k2 n21

√
ln

(√
n1
n2

M(n1, n2, k, ω)Num

)
. (20)

As will be discussed later, the simplified, closed-form method has a much
smaller application range than the exact method.

4.5. Parameter Selection

In this section the selection of the parameters n1, n2, and k of the exact
MW damping-identification method will be discussed. For the numerical
solution of Eq. (19) it is important that the sensitivity of M(n1, n2, k, ω)
to the damping ratio δ is high; mathematically the sensitivity is obtained
by differentiating M(n1, n2, k, ω) with respect to δ. Figure 2 shows the
sensitivity of M(n1, n2, k, ω) to δ at a typical parameter δ, k, n1, or n2. From
a numerical investigation the sensitivity was found to have a maximum close
to n1 = 2.5; furthermore, the sensitivity is easily affected by the number
of oscillations k taken into account. Furthermore, a low damping ratio
decreases the sensitivity severely and becomes the main obstacle to damping-
identification at ultra-low damping ratios in the range 10−4 to 10−6.

Selection of the time-spread parameters n1 and n2. Regarding the identi-
fication sensitivity, the ideal parameter n1 would be n1 = 2.5; however, a
small parameter n1 limits the maximum damping ratio that can be identi-
fied (see Eq. (A.18)), and as a good balance between the sensitivity and the
damping-identification range, in this research n1 = 5 was used.
With regard to the identification sensitivity, the ideal parameter n2 would
be very high; however, n2 is important in identifying the damping at closely
spaced modes by Eq. (24). In this research n2 = 10 was used.
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Figure 2: Sensitivity of M(n1, n2, k, ω) to the damping ratio δ versus n1 at typical param-
eters δ, k. Note: n2 = 10.

Number of oscillations k. The identification sensitivity significantly increases
with a larger parameter k; however, a large parameter k decreases the
damping-identification range given by Eq. (A.18). From Eq. (A.18) the
maximum number of oscillations can be defined as:

kmaxlimit ≤
n21

8π δ
. (21)

However, a large k number is not advisable because the frequency-spread
defined by Eq. (23) can become too narrow for a real damped signal with
a slightly moving frequency of oscillation. For this reason k was limited to
k < 300 in this research.
Furthermore, the minimum of the parameter k can be defined from Eq. (9)
when the amplitude falls to a defined level. In this research the minimum k
was limited with amplitude falling to 30% of the initial level:

kminlimit ≥ −
log 0.3

2π δe
, (22)

where δe is the estimation of the damping ratio. More details about the
selection of k will be given in the numerical section.

Closely spaced frequencies. Closely spaced frequencies can be identified if
Eq. (8) is true. Using Eqs.(6,11,12) the frequency-spread of the analyzing
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signal at the frequency ω1 is:

σωT/2,s1 =
n2 ω1

4π k
frequency-spread(n1 < n2). (23)

Closely spaced frequencies therefore need to comply with:

max
(n2 ω1

4π k
,
n2 ω2

4π k

)
< |ω1 − ω2|. (24)

5. Numerical Experiment

5.1. Resistance to Noise

In this section the resistance to noise is compared to damping-identification
methods using the CWT [1, 9]. The instantaneous Signal-to-Noise Ratio
(iSNR) is defined as [9]:

iSNR = 10 log10

(
var(signal(t))

var(noise)

)
(25)

is used to quantify the rate of the noise. The iSNR changes with time be-
cause the variance of the damped oscillatory motion decreases with time (the
variance of the noise is constant); consequentially, with each oscillation the
noise is more pronounced. It is therefore very important that the damping-
identification is made on as small a number of oscillations as possible. In
this research the iSNR will always refer to the last oscillation of the sample

being analyzed (i.e., the kth oscillation at time T ).
In this subsection only the signals of single-degree-of-freedom (SDOF)

systems are used. The reason for this is that the iSNR can only be calcu-
lated exactly for such a signal. The oscillating frequency of the signal fm is
ωd = 2π rad/s = 1 Hz, the amplitude X = 1, and the phase φ is randomized
for each simulation run. The variance of the Gaussian noise added to the
signal is defined via the iSNR, Eq. (25).
The damping-identification parameters are: k = 30 (the length of the signal
is 30 oscillations), n1 = 5 and n2 = 10 (the time-spread parameters)3.
The resistance of the Morlet-wave damping-identification to noise was nu-
merically simulated on 2000 samples with the iSNR in the range from 0

3According to the Eq. (A.18) the theoretical maximum damping ratio that can be
identified is 0.033. The closer the theoretical limit and the real damping ratio are, the
higher the bias of the damping identification. As can be seen from the Figure 3 the bias is
approximately 1%; however, if n1 = 7 would be used the bias would fall to approximately
0.25%.
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to 40 dB. The error of the damping identification4 is shown in Figure 3. The
Figure 3b) shows box plots [28] where the box spans the distance from the
0.25 quantile to the 0.75 quantile surrounding the median with lines that
extend to span the full dataset. From figure it is clear that the accuracy of
the MW method is within 2.5% if the noise rate is smaller than 15 dB and
the accuracy is within 10% if the noise is smaller than 5 dB. The sampling
frequency for the results in Figure 3 was 10ωd = 10 Hz.

a) b)
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Figure 3: Error of the damping-identification versus iSNR. a) 2000 random samples, b)
box-plot with 400 samples per box.

5.2. Influence of Sampling Frequency

Using the same parameters n1, n2, k as in the Section 5.1, but increasing
the noise to 5 dB the Figure 4 shows that the resistance to noise can be
increased by increasing the sampling frequency: if the sampling frequency
is higher than 50 × ωd the accuracy at 5 dB of noise is close to 5%. The
research proved that with a very high sampling frequency the accuracy of
the damping-identification is within 10%, even for signals with very high
noise, (e.g. see Figure 5 where a signal with -5dB of noise is shown).

5.3. Range of Damping-Identification

In this section the damping ratio range at which the MW method gives
good results will be discussed. As was discussed in Section 4.5, k is usually

4Using the exact method of Eq. (19)
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Figure 4: Error of the damping-identification versus the frequency of the sampling at
iSNR=5dB of noise (400 samples per box).
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Figure 5: Gray: time-series data with noise (iSNR=-5dB). Black: real part of the Morlet-
wave at n = 5.

in the range from 20 to 300. In general, the goal is to identify the damping
from as few oscillations as possible, and for a multi-component signal an
identification in the range from 20 to 50 oscillations can be considered as
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very good. The research on the identification of damping on short signals
by Boltežar and Slavič [10] showed a successful damping-identification with
the CWT and edge effect reduction methods on signals longer than 75 os-
cillations (at a damping ratio in the range of 10−3).
Figure 6 shows the damping-identification error for a damping ratio ranging
from 10−6 to 10−2: the box plots show 400 samples per box where the
noise was negligible (120 dB), and the dashed box plots 400 samples per box
where the noise was 20 dB5.
Figure 6 shows that noisy signals can be analyzed up to a damping ratio of
approximately 10−3.5 and at lower noise levels up to 10−5.

-20

-10

0

10

20

δ [ ]

E
rr
o
r
[%

] 120 dB

20 dB

10−210−310−410−510−6

Figure 6: Expected damping-identification error versus the damping ratio at two noise
levels (400 samples per box).

5.4. Damping-Identification at Closely Spaced Frequencies

To analyze closely spaced frequencies the signal fm had two harmonics,
the first one was fixed at ωd = 2π rad/s=1 Hz and the second (the close
mode) one ωd2 was varied from 0.1 Hz to 3 Hz. The amplitude of both
harmonics was X = 1, the phase φ was randomized for each of the harmonics
and for each simulation run. The damping ratio of the first (the analyzed

5In both cases the parameter k was set with regard to Eq. (22) and the frequency of
the sampling was 10×ωd
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harmonic) was δ = 0.01 and the damping of the close mode was δ2 = 0.005.
The noise was negligible (120 dB).
The damping-identification parameters were: k = 30 (the length of the
signal is 30 oscillations), n1 = 5 and n2 = 10 (the time-spread parameters).
According to Eq. (23) the frequency-spread at ωd using n2 is 0.167 Hz. From
the numerical research with close modes the damping-identification error at
one frequency-spread is within 15%, while at a distance of three frequency-
spreads (approximately 0.5 Hz) the error falls to 5%, see Figure 7.

0.1 0.5 1 1.5 2 2.5 3
-20

-10

0
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20

ωd2 [Hz]

E
rr
o
r
[%

]

Figure 7: damping-identification of close modes: ωd is constant, while the close mode ωd2
is varied (400 samples per box).

5.5. The Exact Method versus the Closed-Form Method

In this section the exact damping-identification method (Section 4.3) will
be compared to the simplified, closed-form, damping-identification method
(Section 4.4). Compared to the exact method, the closed-form solution has
the advantage that it does not require root-finding; however, the disadvan-
tage is that it requires higher values of n1 for accurate results. The higher
the value n1 the lower the resistance to noise.
The preferred parameters for the closed-form method n1 = 10, n2 = 20 will
be used in this section. The parameter k is defined in similar way to the
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exact method in the range from k = 30 to k = 300, see Eq. (22)6.
Figure 8 shows that the closed-form MW damping-identification method

is, at 20 dB of noise, accurate to within 10%.
So as not to lose the focus of this study, detailed numerical research is not
presented here; however, the closed-form solution performs worse on noisy
signals than the exact method. A detailed numerical comparison of the
exact method and the closed-form method shows that the accuracy reached
by the exact method (for a similar number of oscillations k) is reached by
the closed-form method when the iSNR is approximately 10 dB higher.

0 10. 20. 30. 40.
-20

-10

0

10

20

iSNR [dB]

E
rr
o
r
[%

]

Figure 8: Error of the damping-identification versus iSNR - closed-form MW method (400
samples per box).

6. Summary of the Morlet-Wave Damping-Identification Method

This manuscript introduces a new, Morlet-Wave, damping-identification
method. However, because the exact mathematical deductions can distract
from the message and the focus, this section only summarizes the Morlet-
Wave, damping-identification method.

Imagine a dynamical system with several natural frequencies. The damp-
ing identification starts with the acquisition of an impact-response signal fm(t).

6With the selected parameter the G in Eq.(19) at δ = 0.01 equals to 0.9994 and it is
reasonable to use the simplified Eq.(20).
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As discussed in the Numerical Experiment section, a high sampling fre-
quency increases the damping-identification accuracy and should be at least
10 times higher than the highest natural frequency of interest and the du-
ration of the measurement should be at least 300 oscillations of the lowest
natural frequency of interest.

Once the impact response is measured, the damping ratio for a selected
natural frequency ω is identified as follows:

1. From the measured time-signal fm(t), select the part of length T (12):

T = k
2π

ω
, (26)

where k is an integer value and corresponds to (27):

kminlimit ≥ −
log 0.3

2π δe
. (27)

δe is the expected damping ratio. k should be smaller than 300.

2. Select n1 and n2. Typical values for the exact method are n1 = 5,
n2 = 10 and for the closed-form method, n1 = 10, n2 = 20.

3. Identify M(n1, n2, k, ω)Num (18):

M(n1, n2, k, ω)Num =
|I(n1, k, ω)|
|I(n2, k, ω)| , (28)

where

I(n, k, ω) =

∫ k 2π
ω

0
fm(t)

 1

4
√
π

√
2
√
2π k
ω n

e−
(
t−k 2π

ω /2

2
√
2π k
ω n

)2

2 e
−i 2

√
2π k
n

t−k 2π
ω /2

2
√
2π k
ω n

 dt,

(29)

4. Obtain the damping ratio δ either by an exact or by a closed-form
solution:

Exact: find the numerical root of (19)

M(n1, n2, k, ω)Num = e

4π2 k2 δ2 (n22−n21)
n21 n

2
2

√
n2
n1

Erf
(
2π k δ
n1

+ n1
4

)
− Erf

(
2π k δ
n1
− n1

4

)
Erf
(
2π k δ
n2

+ n2
4

)
− Erf

(
2π k δ
n2
− n2

4

)
(30)

Closed-form: use Eq. (20) for a closed-form solution of the damping:

δMorlet =
n1 n2

2π
√
k2 n22 − k2 n21

√
ln

(√
n1
n2

M(n1, n2, k, ω)Num

)
.

(31)
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Figure 9 shows a noise-free damped signal that is 30 oscillations in length
(k = 30).
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Figure 9: Typical measured (noise-free) signal and the real part of the Morlet wavelet at
n1 = 5 and n2 = 10.

Compared to damping identification with the CWT based on logarith-
mic decay, the damping identification using Eq.(20) is relatively easy to
use and is not affected by the edge effect and requires significantly less
computational time. In [9, 10], where CWT damping identification was
researched, the computationally demanding CWT was calculated with a
relatively dense time-frequency grid; even with the cross-sections damping
identification method [4] that requires only one frequency point the CWT
needs to be calculated with a relatively dense time grid. In [9, 10] the time-
grid had more than 100 points. In this research the discussed Morlet-Wave
Method requires similar computational operations as the CWT; however,
twice at only one time-frequency point. Neglecting other numerical opera-
tions (the least-squares in the CWT and the root-finding in the Morlet-Wave
method) the new method is approximately 50 or more times faster than the
established CWT damping-identification methods. An exact analysis of the
numerical load depends on the damping-identification parameters of the
CWT and the wave method and is beyond the scope of this research. At
the same time, the advantages of the damping-identification techniques with
the CWT are preserved.
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7. Conclusion

This study introduces a new viscous damping-identification method based
on the Morlet wavelet. The method is a combination of the continuous
wavelet transform and the finite integral of the Morlet wavelet. With the ap-
proximations given in the appendix, the Exact Morlet-wave (MW) damping-
identification method is obtained, and by further simplifying a Closed-Form,
Morlet-wave, damping-identification method is possible. While preserving
the CWT characteristics of the damping-identification of multi-degree-of-
freedom systems, the accuracy of the identification and the resistance to
noise, the presented wave method is numerically significantly less demand-
ing (approximately 50 times and more) and also completely overcomes the
edge-effect problem of the CWT. For signals with a relatively high noise
level, the root-finding Exact-MW identification method is needed; however,
for signals with moderate noise the Closed-Form MW method gives an ac-
curate solution.
Compared to the CWT based damping-identification the MW based damping-
identification hides the details of ridge/skeleton extraction and the regression
analysis and therefore the MW based procedure is easily used as a “black-
box” method; this can be considered an advantage, but also a disadvantage
as the misuse of the method is harder to identify.
In this research it was found that the Exact MW method damping-identification
is accurate to within 10% at medium damped (damping ratio: 10−1-10−2)
signals with up to 5 dB noise; if the sampling rate is very high (50 to 100
times faster than the frequency analyzed) a 10% accuracy is reached, even
for a very high level of noise (up to -5 dB). For signals with small damping
(damping ratio: 10−3-10−4) the 10% accuracy is reached at signals with less
than 20 dB noise. Furthermore, for ultra-small damping (damping ratio:
10−5-10−6) a 10% accuracy is only possible on a noise-free signal (120 dB).
An investigation on closely spaced frequencies showed that the analysis is
accurate within 20% at a single frequency-spread of the MW damping-
identification method, while at three frequency-spreads the accuracy is within
5%.
A comparison of the two presented methods, the Exact and the Closed-Form,
showed that the Closed-Form method, while being simpler and giving closed-
form solutions, is less resistant to noise (approximately 10 dB).
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Appendix A. Finite Integral of Morlet Wave

In this section the complex integral given in Eq. (16):

I(n, k, ω) =

∫ T

0

(
X e−δ ω t cos(ω t− ϕ)

)
 1

4
√
π

√
2
√
2π k
ω n

e−
(
t−k 2π

ω /2

2
√
2π k
ω n

)2

2 e
−i 2

√
2π k
n

t−k 2π
ω /2

2
√
2π k
ω n

 dt,(A.1)

is discussed with the focus on finding the absolute value |I(n, k, ω)|.
Using symbolic integration techniques, Eq. (A.1) can be rewritten as:

I(n, k, ω) = −
(π

2

)3/4
X

√
k

nω
e
π k (4π k δ2−n2 (i+δ))

n2︸ ︷︷ ︸
A

(BC +D), (A.2)

where:

B = e
16π2 k2 (1+i δ)

n2
−iϕ (A.3)

C = Erf

(
2π k δ

n
− n

4

)
− Erf

(
2π k δ

n
+
n

4

)
(A.4)

D = eiϕ
(

Erf

(
−n

2 − 8π k (δ − 2 i)

4n

)
− Erf

(
n2 + 8π k (δ − 2 i)

4n

))
(A.5)

For typical values of the time-spread parameter n, the number of os-
cillations k and the damping ratio δ the Eq.(A.2) results in numerically
manageable numbers; however, the part B results in very high numbers that
are numerically impossible to deal with. Consequentially, the main goal of
this section is to simplify and approximate the absolute value |I(n, k, ω| for
typical parameters: The absolute value |I(n, k, ω)| is (A.1):

|I(n, k, ω)| = |A (BC +D)| = |A| |BC +D| (A.6)

|I(n, k, ω)| can be approximated with:

|I(n, k, ω)| ≈ |A| |B| |C|, (A.7)

if the following assumption is true:

|D| � |B| |C|. (A.8)
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To prove Eq.(A.8) the Error function Erf is expanded into a Taylor power-
series. By assuming that for the Error function Erf(x) the value x� 0, then
the power-series expansions around ∞ or −∞ are:

Erf(x)|x→±∞ = ±1 + e−x
2

(
− 1√

π x
+

1

2
√
π x3

+ · · ·
)

(A.9)

By using the first-order expansion Erf(x)|x→±∞ = ±1 + e−x
2
(
− 1√

π x

)
the

Eqs.(A.4,A.5) can be rewritten as:

C = −2 +
4n√
π

(
e−(n4−

2π k δ
n )

2

n2 − 8π k δ
+
e−(n4+

2π k δ
n )

2

n2 + 8π k δ

)
(A.10)

D = eiϕ

−2 +
4n√
π

 e
−
(
n2−8π k (δ−2 i)

4n

)2

n2 − 8π k (δ − 2 i)
+
e
−
(
n2+8π k (δ−2 i)

4n

)2

n2 + 8π k (δ − 2 i)



(A.11)

By assuming real positive values it is relatively easy to deduce:

|B| = e
16π2 k2

n2 (A.12)

and by further assuming:
n

4
− 2π k δ

n
> 0 (A.13)

the absolute value of C reduces to:

|C| = 2− 4n e−
(8π k δ+n2)

2

16n2
(
n2
(
e2π k δ + 1

)
+ 8π k δ

(
e2π k δ − 1

))
√
π (n4 − 64π2 k2 δ2)

(A.14)

Continuing with the absolute value of D:

|D| = 4n√
π

∣∣∣∣∣∣∣∣∣
e
−
(
n2−8π k (δ−2 i)

4n

)2

n2 − 8π k (δ − 2 i)︸ ︷︷ ︸
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+
e
−
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4n

)2

n2 + 8π k (δ − 2 i)︸ ︷︷ ︸
D2

∣∣∣∣∣∣∣∣∣− 2 (A.15)

By assuming that |D| � 2 the value 2 can be neglected. Furthermore, by
using |D1 +D2| ≤ |D1|+ |D2|, the value |D| can be limited by:

|D| ≤ 4n√
π

(|D1|+ |D2|) (A.16)
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Figure A.10: |B| |C|/|D∗| vs. δ for typical parameter.

assuming real positive values, Eq.(A.16) can be deduced to:

|D| ≤
4n

(
1√

256π2 k2+(8π k δ+n2)2
+ e2π k δ√

256π2 k2+(n2−8π k δ)2
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16n2

√
π

(A.17)
Fig. A.10 shows the |B| |C|/|D∗| versus the damping factor for typical values:
n = 10, k = 30 (|D∗| is the upper limit of |D| Eq.(A.17)); it is clear that the
assumption of Eq.(A.8) is valid only if the assumption (A.13) is valid. From
Eq. (A.13) it follows that for a selected time-spread parameter n and the
number of oscillations k the theoretically identified damping ratio is limited
by (A.13):

δ ≤ n2

8π k
. (A.18)

Finally, it follows from (A.7)

|I(n, k, ω)| ≈ X
(π

4

)4/3 √ k

nω
e
π k δ (4π k δ−n2)

n2

(
Erf

(
2π k δ

n
+
n

4

)
− Erf

(
2π k δ

n
− n

4

))
,

(A.19)
where |C| was deduced from Eq. (A.4) and |A| in Eq. (A.7) assuming real
positive values was simplified to:

|A| = X
(π

2

)3/4
e
π k (4π k (δ2−4)−n2 δ)

n2

√
k

nω
(A.20)
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